By Topic

RUMBLE: An Incremental Timing-Driven Physical-Synthesis Optimization Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Papa, D.A. ; Electr. Eng. & Comput. Sci. Dept., Michigan Univ., Ann Arbor, MI ; Tao Luo ; Moffitt, M.D. ; Sze, C.N.
more authors

Physical-synthesis tools are responsible for achieving timing closure. Starting with 130-nm designs, multiple cycles are required to cross the chip, making latch placement critical to success. We present a new physical-synthesis optimization for latch placement called Rip Up and Move Boxes with Linear Evaluation (RUMBLE) that uses a linear timing model to optimize timing by simultaneously replacing multiple gates. RUMBLE runs incrementally and in conjunction with static timing analysis to improve the timing for critical paths that have already been optimized by placement, gate sizing, and buffering. Experimental results validate the effectiveness of the approach: Our techniques improve slack by 41.3% of cycle time on average for a large commercial ASIC design.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 12 )