By Topic

Feature Extraction for Document Image Segmentation by pLSA Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yamaguchi, T. ; Dept. of Inf. Eng., Shinshu Univ., Nagano ; Maruyama, M.

In this paper, we propose a method for document image segmentation based on pLSA (probabilistic latent semantic analysis) model. The pLSA model is originally developed for topic discovery in text analysis using "bag-of-words" document representation. The model is useful for image analysis by "bag-of-visual words" image representation. The performance of the method depends on the visual vocabulary generated by feature extraction from the document image. We compare several feature extraction and description methods, and examine the relations to segmentation performance. Through the experiments, we show accurate content-based document segmentation is made possible by using pLSA-based method.

Published in:

Document Analysis Systems, 2008. DAS '08. The Eighth IAPR International Workshop on

Date of Conference:

16-19 Sept. 2008