By Topic

Application of Relevance Feedback in Content Based Image Retrieval Using Gaussian Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Marakakis, A. ; Sch. of Electr. & Comput. Eng., Nat. Tech. Univ. of Athens, Athens ; Galatsanos, N. ; Likas, A. ; Stafylopatis, A.

In this paper a relevance feedback (RF) approach for content based image retrieval (CBIR) is described and evaluated. The approach uses Gaussian mixture (GM) models of the image features and a query that is updated in a probabilistic manner. This update reflects the preferences of the user and is based on the models of both positive and negative feedback images. Retrieval is based on a recently proposed distance measure between probability density functions (pdfs), which can be computed in closed form for GM models. The proposed approach takes advantage of the form of this distance measure and updates it very efficiently based on the models of the user specified relevant and irrelevant images. For evaluation purposes, comparative experimental results are presented that demonstrate the merits of the proposed methodology.

Published in:

Tools with Artificial Intelligence, 2008. ICTAI '08. 20th IEEE International Conference on  (Volume:1 )

Date of Conference:

3-5 Nov. 2008