Cart (Loading....) | Create Account
Close category search window
 

Effects of Inertia and Wrist Oscillations on Contralateral Neurological Postural Tremor Using the Wristalyzer, a New Myohaptic Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Upper limb postural tremor consists of mechanical-reflex and central-neurogenic oscillations, superimposed upon a background of irregular fluctuations in muscle force. Muscle spindles play key-roles in the information flow to supra-spinal and spinal generators. Oscillations were delivered using a new generation portable myohaptic device, called ldquowristalyzer,rdquo taking into account the ergonomy of upper limbs and allowing a fine adjustment to each configuration of upper limb segments. The nominal torque of the first generation device is 4 Nm, with a maximal rotation velocity of 300 degrees/s and a range of motion of plusmn45 degrees. Reliability was assessed in basal condition and during loading conditions. We assessed the effects of the addition of inertia on postural tremor of the finger in a group of 26 neurological patients and the effects of wrist oscillations upon contralateral postural tremor in 6 control subjects and in 7 neurological patients exhibiting a postural tremor. Patients showed two different behaviors in response to inertia and exhibited an increased variability of postural tremor during fast oscillations (13.3 Hz). One patient with overactivity of the olivocerebellar pathways exhibited a drop in the peak frequency of more than 20%. The relative power of the 8-12 Hz subband was significantly higher in controls both in basal condition and during oscillations (p = 0.028 and p = 0.015, respectively). The second generation wristalyzer allows to investigate the effects of mechanical oscillations up to frequency of 50 Hz. This mechatronic device can assess the responsiveness of tremor generators to stimulation of muscle spindles and biomechanical loading. Potential applications are the monitoring of dysmetria under various inertial or damping conditions, the assessment of rigidity in Parkinson's disease and the characterization of voluntary muscle force.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:2 ,  Issue: 4 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.