By Topic

Data Memory Subsystem Resilient to Process Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bennaser, M. ; Dept. of Comput. Eng., Kuwait Univ., Khaldiya ; Yao Guo ; Moritz, C.A.

As technology scales, more sophisticated fabrication processes cause variations in many different parameters in the device. These variations could severely affect the performance of processors by making the latency of circuits less predictable and thus requiring conservative design approaches. In this paper, we use Monte Carlo simulations in addition to worst-case circuit analysis to establish the overall delay due to process variations in a data cache sub-system under both typical and worst-case conditions. The distribution of the cache critical-path-delay in the typical scenario was determined by performing Monte Carlo simulations at different supply voltages, threshold voltages, and transistor lengths on a complete cache design. In addition to establishing the delay variation, we present an adaptive variable-cycle-latency cache architecture that mitigates the impact of process variations on access latency by closely following the typical latency behavior rather than assuming a conservative worst-case design-point. Simulation results show that our adaptive data cache can achieve a 9% to 31% performance improvement in a superscalar processor, on the SPEC2000 applications studied, compared to a conventional design. The area overhead for the additional circuits of the adaptive technique has less than 1% of the total cache area. Additional performance improvement potential exists in processors where the data cache access is on the critical path, by allowing a more aggressive clock rate.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 12 )