By Topic

A Special-Purpose Architecture for Solving the Breakpoint Median Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bakos, J.D. ; Dept. of Comput. Sci. & Eng., Univ. of South Carolina, Columbia, SC ; Elenis, P.E.

In this paper, we describe the design for a co-processor for whole-genome phylogenetic reconstruction. Our current design performs a parallelized breakpoint median computation, which is an expensive component of the overall application. When implemented on a field-programmable gate array (FPGA), our hardware breakpoint median achieves a maximum speedup of 1005times over software. When the coprocessor is used to accelerate the entire reconstruction procedure, we achieve a maximum application speedup of 417times. The results in this paper suggest that FPGA-based acceleration is a promising approach for computationally expensive phylogenetic problems, in spite of the fact that the involved algorithms are based on complex, control-dependent combinatorial optimization.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 12 )