Cart (Loading....) | Create Account
Close category search window
 

Investigation of Metallized Source/Drain Extension for High-Performance Strained NMOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tzu-Juei Wang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan ; Chih-Hsin Ko ; Hong-Nien Lin ; Shoou-Jinn Chang
more authors

Extrinsic source/drain series resistance (R SD) is becoming inevitably dominant in state-of-the-art CMOS technologies as the intrinsic device resistance continues to scale with channel length dictated by the Moore's Law. As a result, advanced scaling techniques to achieve a lower intrinsic device resistance become less effective, particularly for NMOSFETs. With an attempt to better understand R SD impacts and identify the next key technology enabler, high-performance strained NMOSFETs featuring metallized (NiSi) source/drain extension (M-SDE) are investigated due to its cost-effective process and good short-channel scalability. The spacing between metallized extension and gate electrode edge is shown to play a very important role in R SD reduction and can significantly affect the electrical characteristics of M-SDE NMOSFETs. Tradeoff between R SD reduction and device integrity like junction leakage and reliability is found when the extension-to-gate edge spacing is modulated. On the other hand, by optimizing the NiSi-to-gate edge spacing, M-SDE NMOSFETs exhibit a higher on-current (I ON) and a higher strain sensitivity while maintaining comparable drain-induced barrier lowering, subthreshold swing, I OFF , and hot-carrier reliability as compared with the conventional SDE devices.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.