By Topic

Wall Charges and Transition Voltage of Microplasma Modes in Plasma Devices With an Auxiliary Electrode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hun Mun, Jeong ; Sch. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon ; Kim, Seung Hun ; Kyung Cheol Choi

In this paper, the characteristics of microdischarge phenomena in a plasma device with an auxiliary electrode located on the center of the coplanar gap were investigated. The microdischarge showed three discharge modes in accordance with the auxiliary pulse voltages, and its luminous efficacy was improved when it operated in the efficient mode. To understand the mechanisms of that improvement of efficiency, a wall-charge measurement system was proposed and applied to measure the wall-charge behavior, which is a key for the diagnosis of discharge characteristics. For the efficient mode, measurement of wall-charge behavior indicated the presence of the three high efficiency factors, namely, long-gap discharge, current reduction, and priming effect. For the inefficient mode, however, the measured wall-charge behavior indicated that strong short-gap discharges were generated between sustain and auxiliary electrodes, and then, the high efficient factors were not observed. Additionally, in order to operate the device in the efficient mode, the tendency of the mode transition was investigated in terms of panel specifications, such as barrier rib height and coplanar gap. The results indicate that the transition voltage between the efficient and inefficient modes increased when the barrier rib height increased, and it showed the tendency resembling the Paschen curve with various coplanar gaps.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 11 )