Cart (Loading....) | Create Account
Close category search window
 

ZnO Nanowire and \hbox {WS}_{2} Nanotube Electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

22 Author(s)
Unalan, H.E. ; Dept. of Eng., Cambridge Univ., Cambridge ; Yang Yang ; Zhang, Yan ; Hiralal, P.
more authors

In this paper, we report on the synthesis and applications of semiconducting nanostructures. Nanostructures of interest were zinc oxide (ZnO) nanowires and tungsten disulfide (WS2) nanotubes where transistors/phototransistors and photovoltaic (PV) energy conversion cells have been fabricated. ZnO nanowires were grown with both high- and low-temperature approaches, depending on the application. Individual ZnO nanowire side-gated transistors revealed excellent performance with a field-effect mobility of 928 cm2/V middots. ZnO networks were proposed for large-area macroelectronic devices as a less lithographically intense alternative to individual nanowire transistors where mobility values in excess of 20 cm2/V middots have been achieved. Flexible PV devices utilizing ZnO nanowires as electron acceptors and for photoinduced charge separation and transport have been presented. Phototransistors were fabricated using individual WS2 nanotubes, where clear sensitivity to visible light has been observed. The results presented here simply reveal the potential use of inorganic nanowires/tubes for various optoelectronic devices.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 11 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.