By Topic

Performance Recovery of Feedback-Linearization-Based Designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Freidovich, L.B. ; Dept. of Appl. Phys. & Electron., Umea Univ., Umea ; Khalil, H.K.

We consider a tracking problem for a partially feedback linearizable nonlinear system with stable zero dynamics. The system is uncertain and only the output is measured. We use an extended high-gain observer of dimension n+1, where n is the relative degree. The observer estimates n derivatives of the tracking error, of which the first (n-1) derivatives are states of the plant in the normal form and the nth derivative estimates the perturbation due to model uncertainty and disturbance. The controller cancels the perturbation estimate and implements a feedback control law, designed for the nominal linear model that would have been obtained by feedback linearization had all the nonlinearities been known and the signals been available. We prove that the closed-loop system under the observer-based controller recovers the performance of the nominal linear model as the observer gain becomes sufficiently high. Moreover, we prove that the controller has an integral action property in that it ensures regulation of the tracking error to zero in the presence of constant nonvanishing perturbation.

Published in:

Automatic Control, IEEE Transactions on  (Volume:53 ,  Issue: 10 )