By Topic

Identifying Discriminative Amino Acids Within the Hemagglutinin of Human Influenza A H5N1 Virus Using a Decision Tree

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li-Ching Wu ; Inst. of Syst. Biol. & Bioinf., Nat. Central Univ., Jhongli ; Jorng-Tzong Horng ; Hsien-Da Huang ; Wei-Long Chen

Recently, the H5N1 virus has had an increasingly important impact on human life. This is because more and more people are becoming infected with this virus, and the possibility of a serious pandemic with human to human transmission is looming. This might occur if the genome of this influenza virus mutates either by antigenic drift or by antigenic shift, especially if there is a mutation of the hemagglutinin (HA) glycoprotein. The HA is the surface glycoprotein, and it binds to sialic acid of the host cell surface receptor. Thus, the combination of HA and sialic acid are central to whether influenza virus infects humans. In this study, we selected 497 HA protein sequences from the National Center for Biotechnology Information (NCBI) Influenza Resource database, and used a decision tree method to identify discriminative amino acids in the HA protein sequences that may possibly influence the binding of HA to sialic acid. Four such amino acid positions at 54, 55, 241, and 281 were identified and these may play an important role in infection by H5N1 influenza virus.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:12 ,  Issue: 6 )