By Topic

FPGA-Based Real-Time Power Converter Failure Diagnosis for Wind Energy Conversion Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karimi, S. ; Groupe de Rech. en Electrotech. et Electron. de Nancy, Univ. Henri Poincare-Nancy I, Vandoeuvre-les-Nancy ; Gaillard, A. ; Poure, P. ; Saadate, S.

This paper discusses the design, implementation, experimental validation, and performances of a field-programmable gate array (FPGA)-based real-time power converter failure diagnosis for three-leg fault tolerant converter topologies used in wind energy conversion systems (WECSs). The developed approach minimizes the time interval between the fault occurrence and its diagnosis. We demonstrated the possibility to detect a faulty switch in less than 10 mus by using a diagnosis simultaneously based on a ldquotime criterionrdquo and a ldquovoltage criterion.rdquo To attain such a short detection time, an FPGA fully digital implementation is used. The performances of the proposed FPGA-based fault detection method are evaluated for a new fault tolerant back-to-back converter topology suited for WECS with doubly fed induction generator (DFIG). We examine the failure diagnosis method and the response of the WECS when one of the power switches of the fault tolerant back-to-back converter is faulty. The experimental failure diagnosis implementation based on ldquoFPGA in the looprdquo hardware prototyping verifies the performances of the fault tolerant WECS with DFIG.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 12 )