Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Krylov-Proportionate Adaptive Filtering Techniques Not Limited to Sparse Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yukawa, M. ; BSI, RIKEN, Wako

This paper proposes a novel adaptive filtering scheme named the Krylov-proportionate normalized least-mean-square (KPNLMS) algorithm. KPNLMS exploits the benefits (i.e., fast convergence for sparse unknown systems) of the proportionate NLMS algorithm, but its applications are not limited to sparse unknown systems. A set of orthonormal basis vectors is generated from a certain Krylov sequence. It is proven that the unknown system is sparse with respect to the basis vectors in case of fairly uncorrelated input data. Different adaptation gain is allocated to a coefficient of each basis vector, and the gain is roughly proportional to the absolute value of the corresponding coefficient of the current estimate. KPNLMS enjoys i) fast convergence, ii) linear complexity per iteration, and iii) no use of any a priori information. Numerical examples demonstrate significant advantages of the proposed scheme over the reduced-rank method based on the multistage Wiener filter (MWF) and the transform-domain adaptive filter (TDAF) both in noisy and silent situations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 3 )