By Topic

Recognizing Rotated Faces From Frontal and Side Views: An Approach Toward Effective Use of Mugshot Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaozheng Zhang ; Griffith Sch. of Eng., Griffith Univ., Nathan, QLD ; Yongsheng Gao ; Leung, M.K.H.

Mug shot photography has been used to identify criminals by the police for more than a century. However, the common scenario of face recognition using frontal and side-view mug shots as gallery remains largely uninvestigated in computerized face recognition across pose. This paper presents a novel appearance-based approach using frontal and sideface images to handle pose variations in face recognition, which has great potential in forensic and security applications involving police mugshot databases. Virtual views in different poses are generated in two steps: 1) shape modelling and 2) texture synthesis. In the shape modelling step, a multilevel variation minimization approach is applied to generate personalized 3-D face shapes. In the texture synthesis step, face surface properties are analyzed and virtual views in arbitrary viewing conditions are rendered, taking diffuse and specular reflections into account. Appearance-based face recognition is performed with the augmentation of synthesized virtual views covering possible viewing angles to recognize probe views in arbitrary conditions. The encouraging experimental results demonstrated that the proposed approach by using frontal and side-view images is a feasible and effective solution to recognizing rotated faces, which can lead to a better and practical use of existing forensic databases in computerized human face-recognition applications.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:3 ,  Issue: 4 )