By Topic

Generalized Risk Zone: Selecting Observations for Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. T. Peres ; Federal University of Rio de Janeiro (UFRJ) , Rio de Janeiro ; C. E. Pedreira

In this paper, we extend the risk zone concept by creating the Generalized Risk Zone. The Generalized Risk Zone is a model-independent scheme to select key observations in a sample set. The observations belonging to the Generalized Risk Zone have shown comparable, in some experiments even better, classification performance when compared to the use of the whole sample. The main tool that allows this extension is the Cauchy-Schwartz divergence, used as a measure of dissimilarity between probability densities. To overcome the setback concerning pdf's estimation, we used the ideas provided by the Information Theoretic Learning, allowing the calculation to be performed on the available observations only. We used the proposed methodology with Learning Vector Quantization, feedforward Neural Networks, Support Vector Machines, and Nearest Neighbors.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 7 )