Cart (Loading....) | Create Account
Close category search window
 

Skeletal Shape Abstraction from Examples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Demirci, M.F. ; Dept. of Comput. Eng., TOBB Univ. of Econ. & Technol., Ankara ; Shokoufandeh, A. ; Dickinson, S.J.

Learning a class prototype from a set of exemplars is an important challenge facing researchers in object categorization. Although the problem is receiving growing interest, most approaches assume a one-to-one correspondence among local features, restricting their ability to learn true abstractions of a shape. In this paper, we present a new technique for learning an abstract shape prototype from a set of exemplars whose features are in many-to-many correspondence. Focusing on the domain of 2D shape, we represent a silhouette as a medial axis graph whose nodes correspond to "partsrdquo defined by medial branches and whose edges connect adjacent parts. Given a pair of medial axis graphs, we establish a many-to-many correspondence between their nodes to find correspondences among articulating parts. Based on these correspondences, we recover the abstracted medial axis graph along with the positional and radial attributes associated with its nodes. We evaluate the abstracted prototypes in the context of a recognition task.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 5 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.