By Topic

A New Algorithm and System for the Characterization of Handwriting Strokes with Delta-Lognormal Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moussa Djioua ; École Polytechnique de Montréal, Montréal ; Rejean Plamondon

In this paper, we present a new analytical method for estimating the parameters of delta-lognormal functions and characterizing handwriting strokes. According to the kinematic theory of rapid human movements, these parameters contain information on both the motor commands and the timing properties of a neuromuscular system. The new algorithm, called XZERO, exploits relationships between the zero crossings of the first and second time derivatives of a lognormal function and its four basic parameters. The methodology is described and then evaluated under various testing conditions. The new tool allows a greater variety of stroke patterns to be processed automatically. Furthermore, for the first time, the extraction accuracy is quantified empirically, taking advantage of the exponential relationships that link the dispersion of the extraction errors with its signal-to-noise ratio. A new extraction system which combines this algorithm with two other previously published methods is also described and evaluated. This system provides researchers involved in various domains of pattern analysis and artificial intelligence with new tools for the basic study of single strokes as primitives for understanding rapid human movements.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 11 )