By Topic

A study of Particle Swarm Optimization on leukocyte adhesion molecules and control strategies for smart prosthetic hand

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cheng-Hung Chen ; Measurement and Control Engineering Research Center and the Department of Biological Sciences, Idaho State University, 83209, USA ; Ken W. Bosworth ; Marco P. Schoen ; Shawn E. Bearden
more authors

Hard computing based optimization algorithms usually require a lot of computational resources and generally do not have the ability to arrive at the global optimum solution. Soft computing algorithms on the other hand negate these deficiencies, by allowing for reduced computational loads and the ability to find global optimal solutions, even for complex cost surfaces. This paper presents two numerical case studies where a particle swarm optimization (PSO) algorithm is applied to biomedical problems. In particular, the problem of identifying the rupture force for leukocyte adhesion molecules and the problem of finding the correct control parameters of a robotic hand, are addressed. Simulation results indicate that PSO is a feasible alternative to the computational expensive hard computing algorithms.

Published in:

Swarm Intelligence Symposium, 2008. SIS 2008. IEEE

Date of Conference:

21-23 Sept. 2008