By Topic

Using opposition-based learning to improve the performance of particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Omran, M.G.H. ; Dept. of Comput. Sci., Gulf Univ. for Sci. & Technol, Kuwait ; Al-Sharhan, S.

Particle swarm optimization (PSO) is a stochastic, population-based optimization method, which has been applied successfully to a wide range of problems. However, PSO is computationally expensive and suffers from premature convergence. In this paper, opposition-based learning is used to improve the performance of PSO. The performance of the proposed approaches is investigated and compared with PSO when applied to eight benchmark functions. The experiments conducted show that opposition-based learning improves the performance of PSO.

Published in:

Swarm Intelligence Symposium, 2008. SIS 2008. IEEE

Date of Conference:

21-23 Sept. 2008