By Topic

A Hybrid Credit Scoring Model Based on Genetic Programming and Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Defu Zhang ; Dept. of Comput. Sci., Xiamen Univ., Xiamen ; Hifi, M. ; Qingshan Chen ; Weiguo Ye

Credit scoring has obtained more and more attention as the credit industry can benefit from reducing potential risks. Hence, many different useful techniques, known as the credit scoring models, have been developed by the banks and researchers in order to solve the problems involved during the evaluation process. In this paper, a hybrid credit scoring model (HCSM) is developed to deal with the credit scoring problem by incorporating the advantages of genetic programming and support vector machines. Two credit data sets in UCI database are selected as the experimental data to demonstrate the classification accuracy of the HCSM. Compared with support vector machines, genetic programming, decision tree classifiers, logistic regression, and back-propagation neural network, HCSM can obtain better classification accuracy.

Published in:

Natural Computation, 2008. ICNC '08. Fourth International Conference on  (Volume:7 )

Date of Conference:

18-20 Oct. 2008