By Topic

Application of Gene Expression Programming to Real Parameter Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kaikuo Xu ; Sch. of Comput. Sci., Sichuan Univ., Chengdu ; Changjie Tang ; Rong Tang ; Yintian Liu
more authors

Gene Expression Programming (GEP) is a new evolutionary algorithm that implements genome/phoneme representations. Despite its powerful global search ability and wide application in symbolic regression, little work has been done to apply it to real parameter optimization. A real parameter optimization method named Uniform-Constant based GEP (UC-GEP) is proposed in this paper. The main work and contributions include: (1) Compares UC-GEP with Meta-Constant based GEP (MC-GEP), Meta-Uniform-Constant based GEP (MUC-GEP), and Floating Point Genetic Algorithm (FP-GA) on optimizing seven benchmark functions, respectively. Experiment results show that GEP methods outperform FP-GA on five of the seven functions and UC-GEP reaches the global optimum on all seven functions. (2) Compares UC-GEP with both MC-GEP and MUC-GEP on optimizing Rastrigin and Griewangk with various dimensions. Experiment results also show that UC-GEP is the best among these three algorithms.

Published in:

2008 Fourth International Conference on Natural Computation  (Volume:6 )

Date of Conference:

18-20 Oct. 2008