By Topic

Mixed-model multiple-hypothesis tracking of targets in clutter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Tracking targets in clutter, with the inherent data association problem, naturally leads to a Gaussian mixture representation of the probability density function (pdf) of the target state vector, conditioned on the measurements observed. Online trackers require reduction of the number of components in the mixture on each processing cycle, and the integral square error (ISE) based mixture reduction algorithm (MRA) significantly outperforms known alternative algorithms. Moreover, to handle target maneuver onset and changing trajectory characteristics, one can use multiple model adaptive estimation in the form of either multiple model adaptive estimation (MMAE) or interacting multiple model (IMM) algorithms. For maneuvering targets in clutter, one can replace each Kalman filter within a conventional MMAE or IMM with an ISE-based MRA, or better yet, replace each Kalman filter within an ISE-based algorithm with an MMAE or IMM, to yield superior tracking of aggressive maneuvers in deep clutter. Such an ISE-based algorithm of MMAEs is seen to have performance attributes significantly superior to that of a current state-of-the-art tracker.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:44 ,  Issue: 4 )