By Topic

Plasma Immersion Ion Implantation With Lithium Atoms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Oliveira, R.M. ; Nat. Inst. for Space Res., Sao Jose dos Campos ; Ueda, M. ; Rossi, J.O. ; Diaz, B.
more authors

A new method was developed to produce lithium plasma for plasma immersion ion implantation. Initially, an argon glow discharge with operation pressure ranging from 2 times 10-1 to 1 mbar is generated by negatively polarizing an electrode from -400 to -1500 V. Small pieces of metallic lithium that are 99.9% pure fill the top of a conic crucible, with a depth of 2 cm, in electric contact with the electrode. Argon ions from the plasma are used to bombard this target, where heat is created by the momentum transfer from the impacting ions to the crucible. By controlling the operation pressure and the electrode voltage polarization, it is possible to easily heat the crucible to temperatures above the lithium melting point (180degC), causing its evaporation. Lithium atoms are then ionized, mainly due to collisions, with argon ions moving toward the crucible. Double Langmuir probe measurements indicated variation in the density of the discharge from 4 times 109 cm-3 to 1010 cm-3 after lithium evaporation. Silicon wafer pieces immersed in this mixed plasma were submitted to repetitive negative high-voltage pulses (3 kV/6 mus/2.5 kHz) to accelerate plasma ions. High strain in the treated layers was measured by high-resolution X-ray diffraction. Photoluminescence intensity increased after annealing. X-ray photoelectron spectrometry measurement revealed lithium implantation in silicon with an atomic concentration of 78% on the top surface and a penetration depth of about 75 nm.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 5 )