By Topic

Fast Solution of Scattering From Conducting Structures by Local MLFMA Based on Improved Electric Field Integral Equation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Hu ; Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Zaiping Nie ; Lin Lei ; Li Jun Tian

In this paper, a local multilevel fast multipole algorithm (LMLFMA) based on an improved electric field integral equation (IEFIE) is developed to achieve fast and efficient solution of electromagnetic scattering from 3-D conducting structures. The IEFIE is used to reduce iteration number, and LMLFMA is applied to further accelerate the computation of matrix-vector multiplications in iteration, in which only the local interactions between subscatterers are taken into account. Numerical results show that the present method attains faster iterative convergence than traditional EFIE and less computational cost than MLFMA. The speedup can achieve at least 4-5 times while keeping an rms error of less than 2 dB.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:50 ,  Issue: 4 )