Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Power-Efficient Impedance-Modulation Wireless Data Links for Biomedical Implants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mandal, S. ; Analog VLSI & Biol. Syst. Group, Massachusetts Inst. of Technol. (MIT), Cambridge, MA ; Sarpeshkar, R.

We analyze the performance of wireless data telemetry links for implanted biomedical systems. An experimental realization of a bidirectional half-duplex link that uses near-field inductive coupling between the implanted system and an external transceiver is described. Our system minimizes power consumption in the implanted system by using impedance modulation to transmit high-bandwidth information in the uplink direction, i.e., from the implanted to the external system. We measured a data rate of 2.8 Mbps at a bit error rate (BER) of <10-6 (we could not measure error rates below 10-6 ) and a data rate of 4.0 Mbps at a BER of 10-3. Experimental results also demonstrate data transfer rates up to 300 kbps in the opposite, i.e., downlink direction. We also perform a theoretical analysis of the bit error rate performance. An important effect regarding the asymmetry of rising and falling edges that is inherent to impedance modulation is predicted by theory and confirmed by experiment. The link dissipates 2.5 mW in the external system and only 100 muW in the implanted system, making it among the most power-efficient inductive data links reported. Our link is compatible with FCC regulations on radiated emissions.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:2 ,  Issue: 4 )