By Topic

Morphological Clustering and Analysis of Continuous Intracranial Pressure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiao Hu ; Dept. of Neurosurg., Univ. of California, Los Angeles, CA ; Peng Xu ; Scalzo, F. ; Vespa, P.
more authors

The continuous measurement of intracranial pressure (ICP) is an important and established clinical tool that is used in the management of many neurosurgical disorders such as traumatic brain injury. Only mean ICP information is used currently in the prevailing clinical practice, ignoring the useful information in ICP pulse waveform that can be continuously acquired and is potentially useful for forecasting intracranial and cerebrovascular pathophysiological changes. The present study introduces and validates an algorithm of performing automated analysis of continuous ICP pulse waveform. This algorithm is capable of enhancing ICP signal quality, recognizing non artifactual ICP pulses, and optimally designating the three well-established subcomponents in an ICP pulse. Validation of the proposed algorithm is done by comparing non artifactual pulse recognition and peak designation results from a human observer with those from automated analysis based on a large signal database built from 700 h of recordings from 66 neurosurgical patients. An accuracy of 97.84% is achieved in recognizing non artifactual ICP pulses. An accuracy of 90.17%, 87.56%, and 86.53% was obtained for designating each of the three established ICP subpeaks. These results show that the proposed algorithm can be reliably applied to process continuous ICP recordings from real clinical environment to extract useful morphological features of ICP pulses.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 3 )