By Topic

Mutual Fund Performance Evaluation System Using Fast Adaptive Neural Network Classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kehluh Wang ; Nat. Chiao Tung Univ., Hsinchu ; Szuwei Huang ; Yi-Hsuan Chen

Application of financial information systems requires instant and fast response for continually changing market conditions. The purpose of this paper is to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier (FANNC), and to compare our results with those from a backpropagation neural networks (BPN) model. In our experiment, the FANNC approach requires much less time than the BPN approach to evaluate mutual fund performance. RMS is also superior for FANNC. These results hold for both classification problems and for prediction problems, making FANNC ideal for financial applications which require massive volumes of data and routine updates.

Published in:

Natural Computation, 2008. ICNC '08. Fourth International Conference on  (Volume:2 )

Date of Conference:

18-20 Oct. 2008