By Topic

A BP Neural Network Prediction Model of the Urban Air Quality Based on Rough Set

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhifang Jiang ; Sch. of Comput. Sci. & Technol., Shandong Univ., Jinan ; Xiangxu Meng ; Chenglei Yang ; Guansong Li

The paper gives a BP neural network (BPNN) prediction model of the ambient air quality based on rough set theory. We make first the reduction of monitoring data of the pollution sources using the theory of rough set, extract the tidy rules. Then the topological structure of the multilayer BPNN and the nerve cells of the connotative layer are defined with these rules. After that the connected weight values of corresponding nodes of the BPNN are ascertained. Using BP arithmetic, the prediction model is trained with the monitoring data of the pollution sources and air monitor stations for gaining the various parameters of it. Finally, the model after training is used to predict the urban air quality with certain meteorological parameters. The result of the prediction model was proved that it is more accurate than the common BPNN.

Published in:

Natural Computation, 2008. ICNC '08. Fourth International Conference on  (Volume:1 )

Date of Conference:

18-20 Oct. 2008