By Topic

Robust Stability Analysis for Interval Cohen–Grossberg Neural Networks With Unknown Time-Varying Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huaguang Zhang ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang ; Zhanshan Wang ; Derong Liu

In this paper, robust stability problems for interval Cohen-Grossberg neural networks with unknown time-varying delays are investigated. Using linear matrix inequality, M -matrix theory, and Halanay inequality techniques, new sufficient conditions independent of time-varying delays are derived to guarantee the uniqueness and the global robust stability of the equilibrium point of interval Cohen-Grossberg neural networks with time-varying delays. All these results have no restriction on the rate of change of the time-varying delays. Compared to some existing results, these new criteria are less conservative and are more convenient to check. Two numerical examples are used to show the effectiveness of the present results.

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 11 )