By Topic

Bayesian adaptive learning of the parameters of hidden Markov model for speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qiang Huo ; Dept. of Comput. Sci., Hong Kong Univ., Hong Kong ; Chan, C. ; Chin-Hui Lee

A theoretical framework for Bayesian adaptive training of the parameters of a discrete hidden Markov model (DHMM) and of a semi-continuous HMM (SCHMM) with Gaussian mixture state observation densities is presented. In addition to formulating the forward-backward MAP (maximum a posteriori) and the segmental MAP algorithms for estimating the above HMM parameters, a computationally efficient segmental quasi-Bayes algorithm for estimating the state-specific mixture coefficients in SCHMM is developed. For estimating the parameters of the prior densities, a new empirical Bayes method based on the moment estimates is also proposed. The MAP algorithms and the prior parameter specification are directly applicable to training speaker adaptive HMMs. Practical issues related to the use of the proposed techniques for HMM-based speaker adaptation are studied. The proposed MAP algorithms are shown to be effective especially in the cases in which the training or adaptation data are limited

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:3 ,  Issue: 5 )