By Topic

Mining Positive and Negative Fuzzy Sequential Patterns in Large Transaction Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weimin Ouyang ; Moden Educ. Technol. Center, Shanghai Univ. of Political Sci. & Law, Shanghai ; Qinhua Huang ; Shuanghu Luo

Sequential patterns mining is an important research topic in data mining and knowledge discovery. Traditional algorithms for mining sequential patterns are built on the binary attributes databases, which has two limitations. First, it can not concern quantitative attributes; second, only positive sequential patterns are discovered. Mining fuzzy sequential patterns has been proposed to address the first limitation. In this paper, we put forward a discovery algorithm for mining negative sequential patterns to resolve the second limitation, and a discovery algorithm for mining both positive and negative fuzzy sequential patterns by combining these two approaches.

Published in:

Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth International Conference on  (Volume:5 )

Date of Conference:

18-20 Oct. 2008