By Topic

A trace-driven simulator for performance evaluation of cache-based multiprocessor systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Prete, C.A. ; Dipartimento di Ingegneria dell''Inf., Pisa Univ., Italy ; Prina, G. ; Ricciardi, L.

We describe a simulator which emulates the activity of a shared memory, common bus multiprocessor system with private caches. Both kernel and user program activities are considered, thus allowing an accurate analysis and evaluation of coherence protocol performance. The simulator can generate synthetic traces, based on a wide set of input parameters which specify processor, kernel and workload features. Other parameters allow us to detail the multiprocessor architecture for which the analysis has to be carried out. An actual-trace-driven simulation is possible, too, in order to evaluate the performance of a specific multiprocessor with respect to a given workload, if traces concerning this workload are available. In a separate section, we describe how actual traces can also be used to extract a set of input parameters for synthetic trace generation. Finally, we show how the simulator may be successfully employed to carry out a detailed performance analysis of a specific coherence protocol

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:6 ,  Issue: 9 )