By Topic

Shear force feedback control of flexible robot arms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zheng-Hua Luo ; Dept. of Mech. Eng., Nagaoka Univ. of Technol., Niigata, Japan ; N. Kitamura ; Bao-Zhu Guo

For flexible robots with rotational joints it has been shown previously by Luo (1993), that direct strain feedback can damp out vibrations very satisfactorily. In this paper, a simple sensor-based output feedback control law, called shear force feedback, is newly proposed to control vibrations arising from structural flexibility of robots of Cartesian or SCARA types. Closed-loop exponential stability of such shear force feedback system is proved. Experimental results on set point control and trajectory tracking control are reported. It is found that the simple PI+shear force feedback can yield good performance for both robot motion and vibration suppression

Published in:

IEEE Transactions on Robotics and Automation  (Volume:11 ,  Issue: 5 )