Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Toward automatic robot instruction from perception-temporal segmentation of tasks from human hand motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sing Bing Kang ; Digital Equipment Corp., Cambridge, MA, USA ; Ikeuchi, K.

This paper describes work on the temporal segmentation of grasping task sequences based on human hand motion. The segmentation process results in the identification of motion breakpoints separating the different constituent phases of the grasping task. A grasping task is composed of three basic phases: pregrasp phase, static grasp phase, and manipulation phase. We show that by analyzing the fingertip polygon area (which is an indication of the hand preshape) and the speed of hand movement (which is an indication of the hand transportation), we can divide a task into meaningful action segments such as approach object (which corresponds to the pregrasp phase), grasp object, manipulate object, place object, and depart (a special case of the pregrasp phase which signals the termination of the task). We introduce a measure called the volume sweep rate, which is the product of the fingertip polygon area and the hand speed. The profile of this measure is also used in the determination of the task breakpoints

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:11 ,  Issue: 5 )