By Topic

FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin, F.-J. ; Dept. of Electr. Eng., Nat. Central Univ., Chungli ; Teng, L.-T. ; Chen, C.-Y. ; Hung, Y.-C.

A field-programmable gate array (FPGA)-based adaptive backstepping control system with radial basis function network (RBFN) observer is proposed to control the mover position of a linear induction motor (LIM). First, the indirect field-oriented mechanism is adopted for controlling the LIM. Next, a backstepping control law is designed step by step for the tracking control of periodic reference trajectories, in which the uncertainties are lumped by a conservative constant. However, the lumped uncertainty is unknown and difficult to obtain in advance in practical applications. Therefore an RBFN is derived to observe the lumped uncertainty in real-time, and an adaptive backstepping control system with RBFN observer is resulted. Then, an FPGA chip is adopted to implement the indirect field-oriented mechanism and the developed control algorithms for possible low-cost, high-performance industrial applications. The effectiveness of the proposed control scheme is verified by some simulated and experimental results. By using the adaptive backstepping control system with RBFN observer, the FPGA-based LIM drive possesses the advantages of good transient control performance and robustness to uncertainties in the tracking of periodic reference trajectories.

Published in:

Electric Power Applications, IET  (Volume:2 ,  Issue: 6 )