Cart (Loading....) | Create Account
Close category search window

Short term load forecasting using fuzzy neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bakirtzis, A.G. ; Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki, Greece ; Theocharis, J.B. ; Kiartzis, S.J. ; Satsios, K.J.

This paper presents the development of a fuzzy system for short term load forecasting. The fuzzy system has the network structure and the training procedure of a neural network and is called a fuzzy neural network (FNN). An FNN initially creates a rule base from existing historical load data. The parameters of the rule base are then tuned through a training process, so that the output of the FNN adequately matches the available historical load data. Once trained, the FNN can be used to forecast future loads. Test results show that the FNN can forecast future loads with an accuracy comparable to that of neural networks, while its training is much faster than that of neural networks

Published in:

Power Systems, IEEE Transactions on  (Volume:10 ,  Issue: 3 )

Date of Publication:

Aug 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.