Cart (Loading....) | Create Account
Close category search window

Efficient management of speculative data in hardware transactional memory systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Waliullah, M.M. ; Dept. of Comput. Sci. & Eng., Chalmers Univ. of Technol., Goteborg ; Stenstrom, P.

Transactional memory systems promise to simplify parallel programming by avoiding deadlock, livelock, and serialization problems through optimistic, concurrent execution of code segments that potentially can have data conflicts with each other. Data conflict detection in proposed hardware transactional memory systems is done by associating a read bit with each cache block that is set when a block is speculatively read. However, since the set of blocks that have been speculatively read - the read set - has to be maintained until the transaction commits, one can often not replace a block that has been speculatively read. This leads to poor utilization of the private caches in a multi-core system. We propose a new scheme for managing the read set in hardware transactional memory systems. The novel insight is that only the addresses of the speculatively read blocks are needed for conflict detection but not the data. As a result, there is an opportunity to reduce the space needed to keep track of speculatively read blocks by B/A, where B is the block size and A is the block address. Assuming that B is 32 bytes and A is 32 bits, there is an eightfold space saving due to this. This paper presents a novel design for leveraging this opportunity and evaluates a concept that uses a Bloom filter to hash the addresses of the read set into a structure. We find that the proposed scheme utilizes the private cache more efficiently in a typical system configuration.

Published in:

Embedded Computer Systems: Architectures, Modeling, and Simulation, 2008. SAMOS 2008. International Conference on

Date of Conference:

21-24 July 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.