By Topic

ImpBench: A novel benchmark suite for biomedical, microelectronic implants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Strydis, C. ; Comput. Eng. Lab., Delft Univ. of Technol., Delft ; Kachris, C. ; Gaydadjiev, G.N.

So far, design and deployment of microelectronic, implantable devices has largely had a strongly ldquoad-hocrdquo character. The majority of existing devices has been custom-tailored to the specific application in mind, in an effort to abide by strict design constraints on safety as well as power and size. However, an enabling technology and the fact that implants are gradually becoming mainstream market products calls for a more structured design approach. Towards that end, in this paper we present ImpBench, a novel benchmark suite meant for designing and evaluating new digital processors for microelectronic implants. In an application field as wide as the various pathoses of the human body, we have conceptualized this suite based on common-sense and market-driven indicators, and we have established its usefulness and uniqueness based on extensive experimental measurement. The suite consists of eight carefully selected programs, chosen on the basis of popularity among contemporary and emerging implant applications. MiBench being the closest to our application field, that is embedded systems, has been used for a detailed comparative study. Since implants are required to perform control-, processing- or I/O-intensive tasks, various benchmark characteristics have been studied, namely: performance (IPC), cache and branch-prediction behavior, instruction distribution and power consumption. Results display significant variation from existing benchmarks to justify the need for and usefulness of ImpBench.

Published in:

Embedded Computer Systems: Architectures, Modeling, and Simulation, 2008. SAMOS 2008. International Conference on

Date of Conference:

21-24 July 2008