By Topic

A Region Merging Prior for Variational Level Set Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ben Ayed, I. ; Inst. Nat. de la Rech. Sci. Montreal, Montreal, QC ; Mitiche, A.

In current level set image segmentation methods, the number of regions is assumed to known beforehand. As a result, it remains constant during the optimization of the objective functional. How to allow it to vary is an important question which has been generally avoided. This study investigates a region merging prior related to regions area to allow the number of regions to vary automatically during curve evolution, thereby optimizing the objective functional implicitly with respect to the number of regions. We give a statistical interpretation to the coefficient of this prior to balance its effect systematically against the other functional terms. We demonstrate the validity and efficiency of the method by testing on real images of intensity, color, and motion.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 12 )