By Topic

High-Rate Interpolation of Random Signals From Nonideal Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michaeli, T. ; Dept. of Electr. Eng., Tech- nion-Israel Inst. of Technol., Haifa ; Eldar, Y.C.

We address the problem of reconstructing a random signal from samples of its filtered version using a given interpolation kernel. In order to reduce the mean squared error (MSE) when using a nonoptimal kernel, we propose a high rate interpolation scheme in which the interpolation grid is finer than the sampling grid. A digital correction system that processes the samples prior to their multiplication with the shifts of the interpolation kernel is developed. This system is constructed such that the reconstructed signal is the linear minimum MSE (LMMSE) estimate of the original signal given its samples. An analytic expression for the MSE as a function of the interpolation rate is provided, which leads to an explicit condition such that the optimal MSE is achieved with the given nonoptimal kernel. Simulations confirm the reduction in MSE with respect to a system with equal sampling and reconstruction rates.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 3 )