Cart (Loading....) | Create Account
Close category search window

Direction-of-Arrival Estimation for Temporally Correlated Narrowband Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haddadi, F. ; Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran ; Nayebi, M.M. ; Aref, M.R.

Signal direction-of-arrival (DOA) estimation using an array of sensors has been the subject of intensive research and development during the last two decades. Efforts have been directed to both, better solutions for the general data model and to develop more realistic models. So far, many authors have assumed the data to be independent and identically distributed (i.i.d.) samples of a multivariate statistical model. Although this assumption reduces the complexity of the model, it may not be true in certain situations where signals show temporal correlation. Some results are available on the temporally correlated signal model in the literature. The temporally correlated stochastic Cramer-Rao bound (CRB) has been calculated and an instrumental variable-based method called IV-SSF is introduced. Also, it has been shown that temporally correlated CRB is lower bounded by the deterministic CRB. In this paper, we show that temporally correlated CRB is also upper bounded by the stochastic i.i.d. CRB. We investigate the effect of temporal correlation of the signals on the best achievable performance. We also show that the IV-SSF method is not efficient and based on an analysis of the CRB, propose a variation in the method which boosts its performance. Simulation results show the improved performance of the proposed method in terms of lower bias and error variance.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.