By Topic

Distributed Spectrum Sensing and Access in Cognitive Radio Networks With Energy Constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yunxia Chen ; Cisco Syst. Inc., San Jose, CA ; Qing Zhao ; Swami, A.

We design distributed spectrum sensing and access strategies for opportunistic spectrum access (OSA) under an energy constraint on secondary users. Both the continuous and the bursty traffic models are considered for different applications of the secondary network. In each slot, a secondary user sequentially decides whether to sense, where in the spectrum to sense, and whether to access. By casting this sequential decision-making problem in the framework of partially observable Markov decision processes, we obtain stationary optimal spectrum sensing and access policies that maximize the throughput of the secondary user during its battery lifetime. We also establish threshold structures of the optimal policies and study the fundamental tradeoffs involved in the energy-constrained OSA design. Numerical results are provided to investigate the impact of the secondary user's residual energy on the optimal spectrum sensing and access decisions.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 2 )