By Topic

Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Banala, S.K. ; Dept. of Mech. Eng., Univ. of Delaware, Newark, DE ; Seok Hun Kim ; Agrawal, S.K. ; Scholz, J.P.

Gait training of stroke survivors is crucial to facilitate neuromuscular plasticity needed for improvements in functional walking ability. Robot assisted gait training (RAGT) was developed for stroke survivors using active leg exoskeleton (ALEX) and a force-field controller, which uses assist-as-needed paradigm for rehabilitation. In this paradigm undesirable gait motion is resisted and assistance is provided towards desired motion. The force-field controller achieves this paradigm by effectively applying forces at the ankle of the subject through actuators on the hip and knee joints. Two stroke survivors participated in a 15-session gait training study each with ALEX. The results show that by the end of the training the gait pattern of the patients improved and became closer to a healthy subject's gait pattern. Improvement is seen as an increase in the size of the patients' gait pattern, increased knee and ankle joint excursions and increase in their walking speeds on the treadmill.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 1 )