Cart (Loading....) | Create Account
Close category search window
 

Fabrication and Characterization of Gate-All-Around Silicon Nanowires on Bulk Silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

This paper reports on the top-down fabrication and electrical performance of silicon nanowire (SiNW) gate-all-around (GAA) n-type and p-type MOSFET devices integrated on bulk silicon using a local-silicon-on-insulator (SOI) process. The proposed local-SOI fabrication provides various nanowire cross sections: Omega-like, pentagonal, triangular, and circular, all controlled by isotropic etching using nitride spacers and silicon sacrificial oxidation. The reported top-down SiNW fabrication offers excellent control of wire doping and placement, as well as ohmic source and drain contacts. A particular feature of the process is the buildup of a tensile strain in all suspended nanowires, attaining values of few percents, reflected in stress values higher than 2-3 GPa. A very high yield (>90%) is obtained in terms of functionality of long-channel SiNW GAA mosfet. Device characteristics are reported from cryogenic temperature (T = 5 K) up to 150 degC, and promising characteristics in terms of low-field electron mobility, threshold voltage control, and subthreshold slope are demonstrated. Low field mobility for electrons up to 850 cm2 /Vmiddots is reported at room temperature in suspended devices with triangular cross sections; this mobility enhancement is explained by the process-induced tensile strain. In short, suspended SiNW GAA with small triangular cross sections, a single-electron transistor (SET) operation regime is highlighted at T = 5 K. This is attributed to a combined effect of strain and corner conduction in triangular channel cross sections, suggesting the possibility to hybridize CMOS and SET functions by a unique nanowire fabrication platform.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:7 ,  Issue: 6 )

Date of Publication:

Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.