Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Design and Implementation of Model Predictive Control for Electrical Motor Drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bolognani, S. ; Dept. of Tech. & Manage. of Ind. Syst., Univ. of Padova, Vicenza ; Bolognani, S. ; Peretti, L. ; Zigliotto, M.

This paper deals with a model predictive control (MPC) algorithm applied to electrical drives. The main contribution is a comprehensive and detailed description of the controller design process that points out the most critical aspects and also gives some practical hints for implementation. As an example, the MPC is developed for a permanent-magnet synchronous motor drive. Speed and current controllers are combined together, including all of the state variables of the system, instead of keeping the conventional cascade structure. In this way, the controller enforces both the current and the voltage limits. Both simulation and experimental results point out the validity of the design procedure and the potentials of the MPC in the electrical drive field.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 6 )