Cart (Loading....) | Create Account
Close category search window

An optimized Dynamic Load Balancing method for parallel 3-D mesh refinement for finite element electromagnetics with Tetrahedra

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Da Qi Ren ; Dept. of Comput. Sci., Univ. of Tokyo, Tokyo ; Giannacopoulos, D.D. ; Suda, R.

A new Dynamic Load Balancing (DLB) method for automatic performance tuning in parallel, adaptive, 3-D mesh refinement is developed based on study of characteristics of Finite Element Method (FEM) on electromagnetics with tetrahedra. On the top of existing DLB algorithms, the new design optimized the task pool location of each processing element (PE) and the initial data assignments in multiprocessor parallel architecture. To accomplish our method, we investigate it by applying the algorithm in implementations of parallel 3-D Hierarchical Tetrahedra and Octahedra (HTO) mesh refinement. By comparing the benchmark results derived from the performance measures of the new method with the performance results from other two existing DLB algorithms running the same HTO example geometric mesh refinement model and on the same parallel architecture, the benefits of the new method for achieving high performance parallel mesh refinement are demonstrated.

Published in:

Cluster Computing, 2008 IEEE International Conference on

Date of Conference:

Sept. 29 2008-Oct. 1 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.