Cart (Loading....) | Create Account
Close category search window

An RNS Implementation of an F_{p} Elliptic Curve Point Multiplier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schinianakis, D.M. ; Electr. & Comput. Eng. Dept., Univ. of Patras, Patras ; Fournaris, A.P. ; Michail, H.E. ; Kakarountas, A.P.
more authors

Elliptic curve point multiplication is considered to be the most significant operation in all elliptic curve cryptography systems, as it forms the basis of the elliptic curve discrete logarithm problem. Designs for elliptic curve cryptography point multiplication are area demanding and time consuming. Thus, the efficient realization of point multiplication is of fundamental importance for the performance of an elliptic curve system. In this paper, a hardware architecture of an elliptic curve point multiplier is proposed that exploits the intrinsic parallelism of the residue number system (RNS), in order to speed up the elliptic curve point calculations and minimize the area complexity of the elliptic curve point multiplier. The architecture proves to be the fastest among all known design approaches, while complexity is less than half of that of previous efforts. This architecture also supports the required input (binary-to-RNS) and output (RNS-to-binary) conversions. Through a graph-oriented approach, the area of the elliptic curve point multiplier is minimized, by optimizing the point addition and doubling algorithms. Also, through this approach, the number of execution steps for point addition is matched to the number of execution steps for point doubling. Additionally, the impact of various RNS bases, in terms of number of moduli and their bit lengths, on the area and speed of the proposed implementation is analyzed, in an effort to define the potential for using RNS in elliptic curve cryptography.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:56 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.