Cart (Loading....) | Create Account
Close category search window

A New Redundant Binary Booth Encoding for Fast 2^{n} -Bit Multiplier Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yajuan He ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Chip-Hong Chang

The use of redundant binary (RB) arithmetic in the design of high-speed digital multipliers is beneficial due to its high modularity and carry-free addition. To reduce the number of partial products, a high-radix-modified Booth encoding algorithm is desired. However, its use is hampered by the complexity of generating the hard multiples and the overheads resulting from negative multiples and normal binary (NB) to RB number conversion. This paper proposes a new RB Booth encoding scheme to circumvent these problems. The idea is to polarize two adjacent Booth encoded digits to directly form an RB partial product to avoid the hard multiple of high-radix Booth encoding without incurring any correction vector. The proposed method leads to lower encoding and decoding complexity than the recently proposed RB Booth encoder. Synthesis results using Artisan TSMC 0.18-mum standard-cell library show that the RB multipliers designed with our proposed Booth encoding algorithm exhibit on average 14% higher speed and 17% less energy-delay product than the existing multiplication algorithms for a gamut of power-of-two word lengths from 8 to 64 b.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:56 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.