Cart (Loading....) | Create Account
Close category search window
 

Fast Statistical Analysis of Process Variation Effects Using Accurate PLL Behavioral Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chin-Cheng Kuo ; Dept. of Electr. Eng., Nat. Central Univ., Jungli ; Meng-Jung Lee ; Liu, C.-N.J. ; Ching-Ji Huang

Using the behavioral model of a circuit to perform behavioral Monte Carlo simulation (BMCS) is a fast approach to estimate performance shift under process variation with detailed circuit responses. However, accurate Monte Carlo analysis results are difficult to obtain if the behavioral model is not accurate enough. Therefore, this paper proposes to use an efficient bottom-up approach to generate accurate process-variation-aware behavioral models of CPPLL circuits. Without blind regressions, only one input pattern in the extraction mode sufficiently obtains all required parameters in the behavioral model. A quasi-SA approach is also proposed to accurately reflect process variation effects. Considering generic circuit behaviors, the quasi-SA approach saves considerable simulation time for complicated curve fitting but still keeps estimation accuracy. The experimental results demonstrate that the proposed bottom-up modeling flow and quasi-SA equations provide similar accuracy as in the RSM approach, using less extraction cost as in the traditional sensitivity analysis approach.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:56 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.