By Topic

Principal Components Analysis Preprocessing for Improved Classification Accuracies in Pattern-Recognition-Based Myoelectric Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hargrove, L.J. ; Inst. of Biomed. Eng., Univ. of New Brunswick, Fredericton, NB ; Guanglin Li ; Englehart, K.B. ; Hudgins, B.S.

Information extracted from multiple channels of the surface myoelectric signal (MES) recording sites can be used as inputs to control systems for powered upper limb prostheses. For small, closely spaced muscles, such as the muscles in the forearm, the detected MES often contains contributions from more than one muscle, the contribution from each specific muscle being modified by the dispersive propagation through the volume conductor between the muscle and the detection points. In this paper, the measured raw MES signals are rotated by class-specific principal component matrices to spatially decorrelate the measured data prior to feature extraction. This ldquotunesrdquo the data to allow a pattern recognition classifier to better discriminate the test motions. This processing technique was used to significantly (p<0.01) reduce pattern recognition classification error for both intact limbed and transradial amputee subjects.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 5 )